home *** CD-ROM | disk | FTP | other *** search
- comment = {
- FRACTINT.DOC has instructions for adding new formulas to this file.
- Note that there are several hard-coded restrictions in the formula
- interpreter:
-
- 1) The fractal name through the open curly bracket must be on a single line.
- 2) There is a current hard-coded limit of 30 formulas per formula file, only
- because of restrictions in the prompting routines.
- 3) Formulas must currently be less than 200 characters long.
- 3) Comments, like this one, are set up using dummy formulas with no
- formula name or the special name "comment". There can be as many
- of these "comment" fractals as desired, they can be interspersed with
- the real formulas, and they have no length restriction.
-
- The formulas in the beginning of this file are from Mark Peterson, who
- built this fractal interpreter feature. Those at the end are the
- contribution of Scott Taylor [72401,410]. Keep 'em coming, Scott!
- }
-
- Mandelbrot(XAXIS) = {
- z = Pixel: z = sqr(z) + pixel, |z| <= 4
- }
-
- Dragon (ORIGIN) {
- z = Pixel:
- z = sqr(z) + (-0.74543, 0.2),
- |z| <= 4
- }
-
- Daisy (ORIGIN) = { z = pixel: z = z*z + (0.11031, -0.67037), |z| <= 4 }
-
- MandelSine (XYAXIS) { z = Pixel: z = sin(z) * pixel, |z| <= 50 }
- MandelCosine(XYAXIS) { z = pixel: z = cos(z) * pixel, |z| <= 50 }
- MandelHypSine(XYAXIS) { z = pixel: z = sinh(z) * pixel, |z| <= 50 }
- MandelHypCosine(XYAXIS) { z = pixel: z = cosh(z) * pixel, |z| <= 50 }
-
- LambdaLog(XAXIS) {
- z = pixel, c = log(pixel):
- z = c * sqr(z) + pixel,
- |z| <= 4
- }
-
- InvMandel {
- c = z = 1 / pixel:
- z = sqr(z) + c;
- |z| <= 4
- }
-
- MarksMandelPwr {
- z = pixel, c = z ^ (z - 1):
- z = c * sqr(z) + pixel,
- |z| <= 4
- }
-
- DeltaLog(XAXIS) {
- z = pixel, c = log(pixel):
- z = sqr(z) + c,
- |z| <= 4
- }
-
- Newton4(XYAXIS) {
- z = pixel; Root = 1:
- z3 = z*z*z;
- z4 = z3 * z;
- z = (3 * z4 + Root) / (4 * z3),
- .004 <= |z4 - Root|
- }
-
-
- { Formulas from this point on were contributed by Scott Taylor [72401,410]. }
- { Parameter 1 controls the depth - larger numbers give more detail & colors. }
- { My favorite range is between 20-30, but smaller numbers are faster. }
-
- ScottSin(XAXIS) { z = pixel, TEST = (p1+3): z = sin(z) + sqr(z), |z|<TEST }
-
- ScottSinH(XAXIS) { z = pixel, TEST = (p1+3): z = sinh(z) + sqr(z), |z|<TEST }
-
- ScottCos(XYAXIS) { z = pixel, TEST = (p1+3): z = cos(z) + sqr(z), |z|<TEST }
-
- ScottCosH(XYAXIS) { z = pixel, TEST = (p1+3): z = cosh(z) + sqr(z), |z|<TEST }
-
- ScottSZSA(XYAXIS) { z = pixel, TEST = (p1+3): z = sin(z*z), |z|<TEST }
-
- ScottSZSB(XYAXIS) { z = pixel, TEST = (p1+3): z = sin(z)*sin(z), |z|<TEST }
-
- ScottCZSA(XYAXIS) { z = pixel, TEST = (p1+3): z = cos(z*z), |z|<TEST }
-
- ScottCZSB(XYAXIS) { z = pixel, TEST = (p1+3): z = cos(z)*cos(z), |z|<TEST }
-
- ScottLTS(XAXIS) { z = pixel, TEST = (p1+3): z = log(z)*sin(z), |z|<TEST }
-
- ScottLTC(XAXIS) { z = pixel, TEST = (p1+3): z = log(z)*cos(z), |z|<TEST }
-
- ScottLPC(XAXIS) { z = pixel, TEST = (p1+3): z = log(z)+cos(z), |z|<TEST }
-
- ScottLPS { z = pixel, TEST = (p1+3): z = log(z)+sin(z), |z|<TEST }
-
- ScottSIC(XYAXIS) { z = pixel, TEST = (p1+3): z = sqr(1/cos(z)), |z|<TEST }
-
- ScottSIS { z = pixel, TEST = (p1+3): z = sqr(1/sin(z)), |z|<TEST }
-
- ScottZSZZ(XAXIS) { z = pixel, TEST = (p1+3): z = (z*sin(z))+z, |z|<TEST }
-
- ScottZCZZ(XYAXIS) { z = pixel, TEST = (p1+3): z = (z*cos(z))+z, |z|<TEST }
-
-
- { Formulas from this point on are the contrubutions of Lee H. Skinner }
-
- { Tetration formula of Ackerman's Generalized Exponential }
-
- Tetrate(XAXIS) { c = z = pixel: z = c ^ z, |z| <= (P1+3) }
-
- { from expansion module 2 of Fractal Magic 5.0 (Lee stole it - not me!) }
-
- Spider(XAXIS) { c = z = pixel: z = z * z + c; c = c / 2 + z, |z| <= 4 }
-
- { "Dragonland" from EGA Fractal Master. Default corners should really be }
- { -2/4/-2.25/2.25 Not symmetrical to x=1, although it is close! }
-
- Mandelglass(XAXIS) { z = (0.5, 0.0): z = pixel * z * (1 - z), |z| <= 4 }
-